Forces positioning the mitotic spindle: Theories, and now experiments.
نویسندگان
چکیده
The position of the spindle determines the position of the cleavage plane, and is thus crucial for cell division. Although spindle positioning has been extensively studied, the underlying forces ultimately responsible for moving the spindle remain poorly understood. A recent pioneering study by Garzon-Coral et al. uses magnetic tweezers to perform the first direct measurements of the forces involved in positioning the mitotic spindle. Combining this with molecular perturbations and geometrical effects, they use their data to argue that the forces that keep the spindle in its proper position for cell division arise from astral microtubules growing and pushing against the cell's cortex. Here, we review these ground-breaking experiments, the various biomechanical models for spindle positioning that they seek to differentiate, and discuss new questions raised by these measurements.
منابع مشابه
Mitosis: New Roles for Myosin-X and Actin at the Spindle
Roles for actin and myosin in positioning mitotic spindles in the cell are well established. A recent study of myosin-X function in early Xenopus embryo mitosis now reports that this unconventional myosin is required for pole integrity and normal spindle length by localizing to poles and exerting pulling forces on actin filaments within the spindle.
متن کاملp21-activated kinase 4 regulates mitotic spindle positioning and orientation
During mitosis, microtubules (MTs) are massively rearranged into three sets of highly dynamic MTs that are nucleated from the centrosomes to form the mitotic spindle. Tight regulation of spindle positioning in the dividing cell and chromosome alignment at the center of the metaphase spindle are required to ensure perfect chromosome segregation and to position the cytokinetic furrow that will sp...
متن کاملPositioning and Elongation of the Fission Yeast Spindle by Microtubule-Based Pushing
In eukaryotic cells, proper position of the mitotic spindle is necessary for successful cell division and development. We explored the nature of forces governing the positioning and elongation of the mitotic spindle in Schizosaccharomyces pombe. We hypothesized that astral microtubules exert mechanical force on the S. pombe spindle and thus help align the spindle with the major axis of the cell...
متن کاملReconstitution of Basic Mitotic Spindles in Spherical Emulsion Droplets.
Mitotic spindle assembly, positioning and orientation depend on the combined forces generated by microtubule dynamics, microtubule motor proteins and cross-linkers. Growing microtubules can generate pushing forces, while depolymerizing microtubules can convert the energy from microtubule shrinkage into pulling forces, when attached, for example, to cortical dynein or chromosomes. In addition, m...
متن کاملEquilibria of Idealized Confined Astral Microtubules and Coupled Spindle Poles
Positioning of the mitotic spindle through the interaction of astral microtubules with the cell boundary often determines whether the cell division will be symmetric or asymmetric. This process plays a crucial role in development. In this paper, a numerical model is presented that deals with the force exerted on the spindle by astral microtubules that are bent by virtue of their confinement wit...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- BioEssays : news and reviews in molecular, cellular and developmental biology
دوره 39 2 شماره
صفحات -
تاریخ انتشار 2017